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Abstract
This review focuses on experiments on coherent transport through quantum
dot systems. The most important quantity obtained in coherent transport is
the phase shift through the dots, which gives complementary information to
the scattering amplitude (i.e. the conductance). However, two-terminal devices
have a particular difficulty, called ‘phase rigidity’, in obtaining the phase shift.
There are two representative ways to avoid this problem: one is to adopt a multi-
terminal configuration and another is to use resonance in the interferometer.
This review mainly reviews the latter approaches. Such resonance in the whole
interferometer often joins with local resonance inside the interferometer and
appears as the Fano effect, which is a powerful tool for investigating the phase
shift problem with the aid of theories. In addition to such resonances of single-
electron states, electron spin causes a kind of many-body resonance, that is,
the Kondo effect. Combination of these resonances is the Fano–Kondo effect.
Experiments on the Fano–Kondo effect, which unveil the nature of the Kondo
resonance, are also reviewed.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

A semiconductor quantum dot (QD) is often referred as an ‘artificial atom’ [1, 2] because
of the freedom in designing the confinement potential and the in situ controllability of the
parameters. Coherent transport through a QD can be viewed as a scattering experiment [3], in
which the phase shift is as important as the scattering amplitude. The latter corresponds to the
conductivity of the device while the former can be measured through interference. As noted
in [4], information about the phase shift should be included in the lineshape of the conductivity
against the energy of incident electrons, i.e. the gate voltage of the dot in the conventional
experimental set-up. However, in real experimental situations it is not easy to measure the
conductance lineshapes versus the gate voltage in a wide range without changing the dot
parameters. Hence measurement of the phase shift through interference and measurement of
the scattering amplitude (i.e. the conductance) constitute complementary information.

Figure 1 displays the four representative lineshapes of Coulomb oscillation treated in this
article. The number of electrons N in the dot changes one by one when the gate voltage
that shifts the electrostatic potential of the dot and the Fermi level in the leads, attached via
tunnel junctions, passes through a resonant energy level in the dot at a boundary of N . In an
ordinary Coulomb oscillation (figure 1(a)) the conductance forms peaks (Coulomb peaks) at
such boundaries due to the fluctuation of electron number in the QD. At the same time the
phase shift through the dot varies sharply at the resonances by π . When a dot is placed in
an electron interferometer, as illustrated in figure 1(b), this results in a sharp transition of the
interference from destructive to constructive, or vice versa, causing large distortion in the peak
lineshape, which is called the Fano effect (see section 3.2). Many-body interaction between a
localized electron spin in the dot and those of surrounding conduction electrons, which results
in the Kondo effect, modifies the lineshape largely as shown in figure 1(c). Since the spin-
1/2 (SU(2)) Kondo effect causes locking of the phase shift to π/2, reflecting its many-body
resonance nature, the interference (or resonance) of the Kondo singlet state results in a peculiar
transmission lineshape illustrated in figure 1(d), i.e. the Fano–Kondo effect.

The first two lineshapes come from essentially single-electron resonance. In many cases
electron interferometers resemble those for microwaves composed of closed waveguides, in that
electrons do not escape through potential barriers defining the electron circuits. This property
causes multiple reflection from an interferometer to a dot under measurement. In the extreme
of strong reaction from an outer interference circuit (strong coupling limit), we should treat
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Figure 1. Schematic diagrams of Coulomb oscillation in a quantum dot for zero source–drain bias
under various conditions. The corresponding configuration of the leads is displayed on the right.
(a) Ordinary Coulomb oscillation in a QD with a source and a drain. The number of electrons N
in the dot changes one by one with the gate voltage and the conductance has maxima (Coulomb
peaks) at the boundaries of different N . (b) When a QD is embedded in a ‘closed’ interferometer,
the Coulomb peaks become distorted due to the Fano effect. (c) When a QD has an isolated spin
and the Kondo effect comes into play, the conductance at Coulomb valleys is enhanced and two
adjacent peaks merge into one in the unitary limit. (d) The Kondo cloud around the QD shows
peculiar interference effect called the Fano–Kondo effect, exhibiting plateau structures due to phase
shift locking.

the whole system as a resonator having a QD inside. In such a situation of ‘indistinguishable
sample and leads’, there is interplay between the dot and the interferometer. Such system can
then be viewed as an ‘artificial atomic system’ rather than a single artificial atom and the total
transmission itself is of interest.

On the other hand, the last two lineshapes have been closely related to indirect interaction
between conduction electrons through spin-scattering at the QDs. A QD with an odd number
of electrons inevitably has a localized spin (1/2 in the simplest model) on it. The local spin
introduces a many-body nature into the transport over the dot via spin scattering, the Kondo
effect, etc. The phase shift measurement gives important information for the investigation
of such phenomena, and in the strong coupling limit novel complex phenomena of quantum
interference and spin-related many-body effects are expected.

All the four interferometers illustrated in figure 1 are two-terminal devices, that is, each of
them has a single inlet and outlet. A representative electron interferometer is the Aharonov–
Bohm interferometer (ABI) in figure 1(b). However, as we will see in the next section, two-
terminal ABIs have a serious problem called ‘phase rigidity’ in which the phase shift of the
Aharonov–Bohm oscillation in the conductance is locked to 0 or π (see section 2.1). A way
to overcome this difficulty is to adopt a multi-terminal configuration. The Weizmann group is
the world leader in experiments on this. Much important knowledge has been obtained from
their work, which is reviewed and analysed in many publications [5]. Another way is to analyse
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detailed lineshapes of the Coulomb peaks in two-terminal devices and to deduce the phase shift
with the aid of theories based on appropriate models.

In this review we consider experiments using the latter method, which were mainly carried
out by a group at Tokyo University. First we pay attention to the appearance of the single
electron interference effect in QD circuits, then go into many-body effects with emphasis on
the effect of spins on it, above all the Kondo effect.

2. Interference circuits with quantum dots

2.1. Phase tuning and interferometers

For interferometry we need to tune the phase of the electron wavefunctions with some
external parameters. Two representative parameters are magnetic field and electric field. The
former is controlled simply by applying an external magnetic field, thus modifying the phase
through the Aharonov–Bohm effect [6], while the latter is usually applied locally by using
lithographically fabricated metallic gates which modulate the phase through the variation in the
Fermi wavelength, as we see in the following.

Aharonov–Bohm (AB) phase tuning is the most popular method for phase tuning in
electron interferometers. In the presence of a vector potential A, an electron gains an additional
phase (AB phase)

θAB = e

h̄

∫ 2

1
A · ds, (1)

when it traverses from point 1 to 2, where ds is a line element on the path. θAB is tunable
through the magnetic field and as easily guessed from (1) is independent of the kinetic energy
or other electron parameters. In other words, the AB phase is a kind of Berry phase [7] and
only depends on the path geometry and the vector potential. This makes the situation extremely
simple.

The gate voltage VW applied to the path of the electrons, i.e. the electric field to the
electron, is another candidate. The shift of the kinetic energy (h̄k)2/2m∗ compensates the
potential energy eVW resulting in the shift of the wavevector; hence the phase shift at the Fermi
wavevector kF in a one-dimensional model is

θEL =
∫ 2

1

(√
2m∗(EF − eVW)

h̄
− kF

)
dl, (2)

where dl is a line element on the path from point 1 to 2. θEL depends on kF and m∗ (EF).
Equation (2) gives different values for different conductance channels from that in kF, and
this method is only applicable for single-channel conduction except for cases in which we
have effective way to resolve the contribution of a single channel to the total conductance (see
section 3.3).

After the selection of the phase tuning method, we need to make an interferometer that
has a QD in an interference path. A simple interferometer comprises a fork, a path under
measurement, another path for reference and a junction. The interference pattern is obtained
from the output by tuning the path length or the phase shift through the reference path. Figure 2
summarizes the two-terminal electron interferometers with a QD which appear in this review.
Regarding the spatial structure, figure 2(a) is the most complicated and (c) the simplest, though
conceptually (a) is the simplest and some hidden interference paths exist in (b) and (c).

Figure 2(a) depicts a ring type interferometer with two wires, for which AB phase tuning
is most frequently used. This configuration is thus called an Aharonov–Bohm interferometer
(ABI). The difference between the AB phases of the two paths is given as 2πφ/φ0, where φ is
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Figure 2. Schematic diagrams of various interferometers with quantum dots. White arrows indicate
the directions of electron wave propagation. (a) Aharonov–Bohm (AB) ring with a quantum dot.
(b) T-shaped interferometer or stub resonator with a quantum dot at the end of the stub. (c) Single
quantum dot circuit.

the magnetic flux piercing the area encircled by the paths and φ0 ≡ h/e is the flux quantum.
The interference pattern is then given as

ρ2t(φ) ∝ cos

(
2π

φ

φ0
+ θoff

)
, (3)

where the offset phase θoff contains the system information in the case of a double-slit like open
interferometer. However, Onsager reciprocity requires [8] a two-terminal resistance ρ2t to be
symmetric for magnetic field B , namely,

ρ2t(B) = ρ2t(−B). (4)

Equations (3) and (4) require θoff to be 0 or φ. This is called ‘phase rigidity’, and is a serious
obstacle to phase measurement.

Phase rigidity in a two-terminal ABI comes from unitarity of the device, i.e. the
conservation of the total probability amplitude. In Young’s double slit experiment, only the
probability current along the detection angle contributes to the signal and the other part is lost.
On the other hand the component that does not transmit through a two-terminal device should
be reflected to the source. Hence a way to avoid the problem is to throw away the component
that does not go into the detector (i.e. the output line) in the first passing process. Schuster
et al [13] first demonstrated that phase rigidity can be broken by adopting a multi-terminal
configuration.

Another way to express the origin of phase rigidity is by multiple reflections of the waves
at the crossing points in the interferometers. Multiple reflections at the same time add a higher
harmonic component to the base oscillation (3). Hence the information about the phase shift
through the ‘specimen’ is contained in the higher harmonics and the detailed analysis of such
components would thus give the phase shift [9]. Especially at a resonance energy, the primary
oscillation (3) disappears due to the phase rigidity and higher harmonics are emphasized.

A simpler system is a T-shaped interferometer or a side-coupled geometry drawn in
figure 2(b). In an ideal case of this geometry the dot has a single point connection to the
interferometer and only the reflection from the dot comes into the interferometer. This means
that an in/out process of the dot contains double passing of the dot wavefunction, hence the
0 → π shift is doubled to 0 → 2π and the resultant phase shift does not reflect the parity of
the resonant state in the dot.

A single quantum dot system shown in figure 2(c) does not have an explicit geometrical
interference path, though clear interference is observed through a multi-level conduction when
the coupling to the wires is strong enough to cause co-tunnelling via an off-resonance state.

2.2. Experimental realization

At present, a high-mobility two-dimensional electron gas (2DEG) at the AlGaAs/GaAs hetero-
interface is the best system for realizing solid state electron interferometers. The coherence

5



J. Phys.: Condens. Matter 19 (2007) 233201 Topical Review

length in them is very long and the interference circuits as well as the quantum dots are easily
defined by the split gate technique.

A difficulty in the split gate technique arises when a ‘floating’ gate is an inevitable
constituent of the interferometer. The simplest example is an AB ring, where the centre island
is inevitably floating. The electrostatic potential of the floating gate fluctuates and is sensitive
to those of other gates, muddling the experimental results. A direct way of overcoming the
difficulty is the use of a bridging technique, in which a metallic lead passes beyond the sample
surface anchoring the electrostatic potential to the voltage source outside the cryostat.

The etching-off method for definition of quantum wires and interference circuits is another
way to escape from the difficulty. To define the dots, and to control the parameters, micro-
fabricated Schottky gates can be used, which may be split gates or wrapping gates [10]. A
problem in the split gate technique is electrostatic coupling between the gates, which disturbs
independent control of each gate. Such coupling is usually much smaller in the wrapping gate
technique and can be treated as a small linear perturbation. A similar method is selective killing
of the 2DEG by oxidation with an atomic force microscope (AFM) [11]. Because of the high
resolution smaller dots and circuits are available with this method.

The dot size is controllable by the gate voltages, though a dot from a 2DEG usually has
the problem of isolation from the electrodes when it approaches the few-electron regime. Ways
to overcome this problem have been reported, e.g. the adoption of very narrow gates though
the cleanest dots with high spatial symmetry has been reported for vertical type dots, in which
the barrier thickness is determined as that of stacked thin barrier layers and independent of the
gate voltage. On the other hand, one meets difficulties in forming the interference circuits with
vertical type dots. At present few interference experiments have been reported for vertical type
dots.

3. AB ring interferometry

3.1. The Breit–Wigner phase shift

The complex transmission coefficient g at the incident electron energy ε around a resonance is
expressed in a Breit–Wigner form [12], that is,

g(ε) ∝ 1

(ε − ε0)+ iγ
, (5)

where ε0 is the resonance energy and γ is a quantity related to the width of the resonance.
Equation (5) leads to a steep variation of the phase shift from 0 to π . The first target of the
experiments is then to directly detect the behaviour of (5) in the interference.

As mentioned in section 2.1, this phase shift variation cannot be detected as the shift of
the AB oscillation phase of a two-terminal AB ring [14], which was clearly demonstrated in
pioneering works by Yacoby et al [15, 16]. Schuster et al first succeeded in demonstrating the
phase shift variation that obeys (5) by adopting the open type geometry illustrated in figure 3(a).

At the same time the Weizmann group [13, 15, 16] discovered the intriguing behaviour
of ‘parity locking’ or the ‘phase lapse’ problem. Figure 3(b) shows the results of phase shift
measurement for five successive Coulomb peaks. Around the resonances that are indicated
by arrows, the phase shift varies according to (5). It is surprising that the phase shift jumps
by −π between the resonances and it repeats a 0 → π variation at every peak. Due to the
Kramers degeneracy, a single jump of −π (or a continuous variation of −π ) is natural, though
successive jumps mean that the corresponding wavefunctions stacked in energy have the same
parity, which is hardly conceivable within elementary quantum mechanics.
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Figure 3. (a) Gate structure of the first device of a multi-terminal (leaky) configuration, in which
the phase shift of a QD was measured. (b) Collector voltage which has direct correspondence with
the conductance (upper solid circles) and AB oscillation phase (lower open circles) as a function of
the dot gate voltage. Data taken from [13].

This phase lapse problem is a challenge both to the theories and the experiments. A
number of theoretical proposals have appeared, though most of have not been unchecked by
experiments. We will return to this problem in section 6.

3.2. Resonance and transition in two-terminal devices: the Fano effect

In two-terminal devices, the conservation of probability requires that the sum of the total
reflection coefficient R and the transmission coefficient T is unity, i.e.

T + R = 1, (6)

which leads to the phase rigidity mentioned in section 2.1. When the coupling of an AB ring
to the leads is weak, the phase rigidity is understood as a result of multiple reflection and
circulation of electronic waves inside the ring and the system can be treated as a ring-shaped
resonator with a QD and with some leakage to the leads.

This problem falls within so-called ‘Fano physics’ [17]. Fano [18] treated a scattering
problem in which an incident wave is coherently scattered through a localized state with finite
coupling to the continuum. In order to extract the effect of resonance between a localized state
φ and those of the continuum ϕ(E) with energy E , he first wrote down the hybridized state
ψ(ε) of the new energy ε with coefficients a(ε) and b(ε, E) as

ψ(ε) = a(ε)φ +
∫

dE b(ε, E)ϕ(E). (7)

Here the Hamiltonian H of the hybrid system is defined as

〈φ|H |φ〉 = E0, 〈ϕ(E)|H |ϕ(E)〉 = E, 〈ϕ(E)|H |φ〉 = VE . (8)

Then b(E) is formally written as

b(ε, E) =
[

P
1

ε − E
+ z(ε)δ(ε − E)

]
VE a(ε). (9)

Though in the usual scattering problem z(ε) is iπ , here z(ε) can be real as long as the system
has time reversal symmetry and is represented as

z(ε) = 1

|Vε|2
[
ε − E0 − P

∫
dE

|VE |2
ε − E

]
= − π

tan�θ
, (10)
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Figure 4. Three typical lineshapes of F(ε) in equation (13) for q = 0, 1, 2.

where �θ is the phase shift due to the coupling VE . Now the transition probability of an
incoming state ξi to ψε can be written as

〈ψε |T |ξi 〉 = 1

πV ∗
ε

〈|T |ξi 〉 sin�θ − 〈ψε |T |ξi〉 cos�θ, (11)

where

 = φ + P
∫

dE
Vεϕ(E)

ε − E
(12)

can be interpreted as the localized state modified by the coupling to the continuum.
We obtain the functional form of the transition probability |〈ψε |T |ξi 〉|2, then, as

F(ε ′) ∝ (ε ′ − q)2

ε ′2 + 1
. (13)

Here the energy ε ′ is shifted and renormalized as

ε ′ = −cot�θ = 2

�

[
ε − E0 − P

∫
dE

|VE |2
ε ′ − E

]
, (14)

� is the ‘width’ of the localized state :

� = π |Vε′ |2, (15)

and the parameter q , which is called the Fano parameter, is defined as

q = 〈|T |ϕi〉
πVε′ 〈ψε′ |T |ϕi〉 . (16)

Typical lineshapes of F(ε) are plotted in figure 4. The phase shift �θ varies by π
around the resonant point E0 of the localized state, which makes the total system go through
a resonance and an anti-resonance (or vice versa). As a result the lineshape has a peak and a
dip to zero side by side and is generally largely distorted. q = 0 is a special case and F(ε) has
only a symmetric dip while it has only a peak when q = ±∞.

An intuitive view of the relation between the Fano problem and an AB interferometer with
a QD is given by considering the case that the QD has a stronger coupling to, e.g., the right
electrodes [17]. The localized states in the dot form hybrid states with the continuum in the right
electrode and the problem is the transition from the left electrode to the hybrid ones. Here the
correspondence with the Fano problem is obvious. Fano’s original discussion treated the case

8



J. Phys.: Condens. Matter 19 (2007) 233201 Topical Review

Figure 5. (a) Scanning electron micrograph of the sample used in the observation of the Fano
effect in an AB interferometer (ABI). Gate voltages VL and VR were used to define a QD in the
lower arm whereas Vg and VC were to control the dot electrostatic potential and the conductance
of the reference respectively. (b) Conductance of the ABI, with all the gates at zero voltage.
The insets show details for two different regions of magnetic field. (c) Fourier transformation of
the magnetoresistance in (b). A, C are the frequencies, which correspond to the outer and inner
perimeters of the ABI and B the path goes through the middle of them. The inset is a log-plot of the
same data, enhancing the higher harmonics. (From [19].)

with time-reversal symmetry, which corresponds to zero magnetic field. The AB QD problem
requires an extension in this point. With such an extension, Hofstetter et al [22] obtained a
generalized the Fano formula Apart from this specific case, correspondence generally exists
between an AB QD system and the extended Fano problem.

Figure 5(a) shows a scanning electron micrograph of our sample made of a 2DEG at an
AlGaAs/GaAs interface [20]. The AB ring structure was defined by wet etching and the dot
was defined by Schottky gates, which can be seen as white regions in the picture. The dot in
the upper arm (the reference path) was not used in the experiment and one of the three gates
was used to control the conductance of the reference path.

When we opened all the gates the system worked as an ordinary AB ring interferometer. At
the lowest temperature, a clear AB oscillation appeared in the magnetoresistance as displayed in
figure 5(b), the Fourier transformation of which shows clear peaks at higher harmonics at least
up to 10 (figure 5(c)). This clearly tells us that the paths with large winding numbers contribute
to the conductance. The magnetoresistance is highly symmetric to the zero field, reflecting the
two-terminal nature of the device (i.e. the Onsager reciprocity). Note that the amplitude of the

9
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Figure 6. Coulomb oscillations with (upper) and without (lower) parallel conduction of the
reference arm. Clear Fano distortion is observed in the data with reference conduction. (From [20].)

AB oscillation remains as 5% of the total conductance due to, e.g., the asymmetry between
the two paths (some channels might have no bifurcation at the connections). It should also be
noted that the main peak in the Fourier transform has a finite width corresponding to the width
of the AB ring geometry. This makes it necessary to consider the multi-path effect, which will
be treated in the next subsection.

When the reference arm was pinched off, an ordinary Coulomb oscillation appeared as
shown in the lower graph in figure 6, while the lineshape of each Coulomb peak was largely
distorted for a finite reference conductance as shown in the upper graph. Equation (13) only
tells us the transition probability to the localized hybrid state and the total conductance contains
contributions from the other transitions (e.g. a channel with no separation at the wire–ring
connection points). Hence the conductance does not ‘touch to zero’ even at the dips. The
evidence that the observed distortion is due to the Fano effect is obtained through the response
to the magnetic flux, which can be found in figure 7.

The grey-scale plot in figure 7(a) strongly resembles the theoretical prediction for the Fano
effect in an ABI, e.g. in [17], and the pattern is also slightly distorted upward. The distortion
means the breaking of phase rigidity, which will be discussed later. A sound demonstration
is shown in figure 7(b), where the direction of the distortion is reversed with a magnetic flux
variation of φ0/2. This shows that the distortion comes from the interference through the AB
ring and the fact that the Fourier transform of the AB oscillation shows up to 10th higher
harmonics leads to the conclusion that the distortion is due to the Fano effect. The lineshapes
are well fitted by equation (13), as shown by the broken lines.

An unnatural thing here is that the fitted value of q diverges for the completely symmetric
lineshape while the quantities in the right-hand side of equation (16) are hardly believed to go
to infinity or zero with magnetic flux. Fano treated the case with time-reversal symmetry, while
in the experiment the symmetry is broken by the magnetic flux, hence the extension at this point
would solve the unnatural divergence. Such generalization of Fano’s theory has been discussed

10
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Figure 7. (a) Grey-scale plot of the conductance of the ABI in figure 5(a) as a function of the gate
voltage Vg and the magnetic flux. (b) Cross sections of (a) along three white dotted lines, which
correspond to the AB phase shift of 0, π/2 and π . (From [21].)

for years [17, 22–25] and it is suggested that the effect of symmetry breaking can be taken into
account by simply modifying the expression of q as

q = q1 cos(�θ)+ iq2 sin(�θ), (17)

where �θ is the AB phase shift, q1 and q2 are real parameters defined by both the tunnelling
coupling between the QD and its leads and the coupling strength between the QD and the
continuum energy state. Here q should be treated as a complex number reflecting the broken
time-reversal symmetry. We tried fitting the complex qs of equation (17) with equation (13) to
the lineshapes around B = 0.91–0.93 T. We treated Re q , Im q , V0, � and the background
conductance as fitting parameters [21]. The result of fitting is reasonable, as presented in
figure 8(a), as long as we admit q to have an offset, that is, the results shown in figure 8(c)
distribute on an ellipsoid with a centre shifted from the origin. This discrepancy with
equation (17) is probably due to the multi-path effect discussed in the next section.

3.3. Electrostatic phase shift

As discussed in section 2.1, the biggest obstacle to interferometry using electrostatic phase
shift tuning is the energy dependence of the phase shift in equation (2). Hence if there are
several channels in an AB ring, the phase shifts are incoherent, which largely disturbs clear
interferometry. However, in an AB QD, if each single electron level in the QD has a single

11
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Figure 8. (a) Conductance of the system measured at 30 mK at different magnetic fields that cover
one AB period. The open circles and the solid curves are the experiments and the results of the
fitting, respectively. They are incrementally shifted upward for clarity. (b) Obtained Re q and Im q
are plotted. The solid curves are the fitted sinusoidal curves. (c) Result of (b) plotted in the complex
q plane by treating B as an internal parameter. The cross indicates the ellipse centre of the complex
q. (From [21].)

channel strongly connected to it, the analysis of Fano lineshape works as an effective filter to
extract the interference effect of the single channel.

The above hypothesis can be experimentally checked by applying the ‘complex-q’
analysis [26]. Figure 9 shows an example of such an analysis. In this experiment the variation
of the Fano lineshape was traced by sweeping the control gate voltage VC, which affects both
the electron phase shifts and the conductance through the reference arm. Apparent directional
reversal of the distortion due to a shift in VC is observed in figure 9. As shown in figure 9(b),
fitting of equation (13) with real q results in divergent behaviour while complex q smoothly
oscillates around zero attesting to successful fitting.

The above results confirm the hypothesis that each level in a QD has a specific channel that
has a larger transition probability to it, and at the same time demonstrate that the Fano effect
is a powerful tool for filtering conduction channels and extracting the interference of the single
channel.

4. Breakdown of phase rigidity in multichannel conduction

The distortion observed in the Fano pattern in figure 7 means a smooth shift of the AB phase,
that is, the breakdown of phase rigidity. As mentioned in section 2.1, the constraints that cause
phase rigidity in two-terminal devices are equations (3) and (4). Among them the Onsager
reciprocity (4) holds well in the experiments, which reflects the two-terminal nature. This
simply indicates that (3) is broken and that some multi-path effect breaks the phase rigidity.
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Figure 9. (a) Conductance of an ABI as a function of the dot gate voltage for two different control
gate voltages VC showing a change in the Fano lineshape with VC. (b) Complex q (i.e. real and
imaginary parts) and real q as a function of VC. While real q shows divergent behaviour, complex
q varies smoothly with VC. The two arrows indicate positions of VC shown in (a). (From [27].)

Figure 10. Model for an ABI QD with multichannel conduction: the right and the left leads (R and
L) connect to each other via single-electron levels in the QD and, in the reference, independently
through N + 1 branches (the figure shows the case of N = 4).

This is also supported by the width of the Fourier transformation in figure 5(c), which is much
wider than the natural width due to the field range.

Aharony et al [19] adopted the model shown in figure 10 to consider the multichannel
effect, taking into account the hypothesis that each level in the QD has a channel with a strong
coupling constant, which was confirmed in the experiment described in section 3.3. In the
model, the left and right leads, the reference arm and the levels in the QD are treated as tight-
binding sites. The sites in the QD have connections to the left lead (site L) and the right
lead (site R) with hopping matrices J�,r (n) = J 0

�,r (n)e
iφ(n) with real number J 0

�,r (n), where
� and r correspond to left and right, respectively, n is the index of the levels in the QD,
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and φ(n) is the phase associated with the nth channel. The couplings to the reference are
written as j�,r . Aharony et al derived the expression for the complex transmission coefficient
t as

t = S�r 2i sin ka

(S�� + e−ika)(Srr + e−ika)− |S�r |2 , (18)

where

Sxy =
∑

n

Jx(n)Jy(n)∗

J [ε − ED(n)] + jx jy

J (ε − Eref)
(19)

(x, y stand for �, r ), and ED and Eref are the energies of the dot levels and the reference,
respectively. The model in figure 10 seems to be simple, though it can take into account
various effects through tuning of the parameters. For example, the effect of a strongly coupling
state, which will be discussed in sections 6.1 and 6.2, is effectively included through large J�,r .
Through the interaction via sites L and R, a state with large coupling strength strongly mixes
with others and plays the role of a strongly coupled state.

The applicability of the model to experiments was tested by the following procedure [19].
First, the reference arm was pinched off and the parameters except j�,r and Eref (e.g. J�,r (n),
etc) were obtained by fitting equation (18) to the ordinary Coulomb oscillation. Next, the
reference was opened and the variation of the Fano lineshape was measured by changing the
magnetic field. The fitting of equation (18) to the lineshapes was then attempted with φ(n),
j�,r and Eref as fitting parameters. The results are shown in figure 11. The excellent agreement
indicates that the model in figure 10 represents the essential points of the physics (e.g. the
multichannel effect, and the specific couplings between the paths and the levels).

The present model is applicable for a comparatively narrow range of magnetic field. It
assumes rigid conductance channels for magnetic field, which apparently does not hold for a
wide range of field. Hence if phase rigidity breakdown occurs uniformly over a wide range of
magnetic field, we should consider a different model, as we will see in section 8.3.

5. Interferometry in T-shaped resonators

5.1. The Fano effect in T-shaped geometry

As noted in section 2.1, only the reflection mode wave is contained in a T-shaped geometry
interferometer. This makes the situation simple, while the information on, for example, the
parity of the wavefunction in resonance is lost. Also, if the connection between a dot and a
wire is ideally single, only q = 0 is allowed in the lineshape.

On the other hand, the apparent experimental advantage in the T-shaped geometry is that
the size of the dot can be extremely small, down to the few-electron regime, while maintaining
the coupling strength to an electrode even in lateral QDs without special experimental
techniques. This is due to the single-point connection between the wire and the QD, which
allows them to be very close to each other. However, this closeness leads to another problem,
that is, the effect of electrostatic potential due to the dot. The number of electrons in a
QD changes one by one at the Coulomb peaks, which causes a rapid shift of electrostatic
potential around the peaks. The shift affects the transport via two channels: the phase shift
represented as equation (2) and the changes in the transmission coefficients. As estimated in
section 3.3, the former effect is usually smaller than the latter, which is particularly serious
when a subband bottom of the wire is close to the Fermi level (i.e. a transition region in the
staircase of conductance quantization). Remote charge sensing in QDs usually involves this
sensitive region.

14



J. Phys.: Condens. Matter 19 (2007) 233201 Topical Review

Figure 11. Conductance from the ABI. Dots: experiment. Full lines: fit to theory (equation (18)).
Curves correspond to fields B between 0.9100 T (φ − φ1 = −0.995π ) and 0.9132 T (φ − φ1 =
0.995π ), each graph is shifted by 0.15e2/h. (From [19].)

Johnson et al analysed the conductance of a T-shaped interferometer, accounting for both
effects [28]. They found the lineshape to be well fitted by their model, as shown in figure 12,
and the Coulomb effect was less serious for stronger coupling between the dot and the wire.

5.2. Temperature dependence of coherence

A T-shape geometry is easily obtained by cutting one end of the QD in an AB ring
interferometer by pinching the gate (inset of figure 13(a)). With this method, the ‘stub’ region
tends to become comparatively long, hence the interference pattern appears only at very low
temperatures where the coherence length is sufficiently longer than the stub. This behaviour is
observed in figure 13(a). Because the crossing point is far from the dot, the Coulomb effect
is less effective, which is clearly manifested in the insensitivity to the gate voltage at high
temperatures.
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Figure 12. Conductance of a quantum wire with a side-coupled QD (T-shaped interferometer). The
inset shows a scanning electron micrograph of the sample. From [28].

Figure 13. (a) Temperature variation of wire conductance as a function of the dot gate voltage in a
T-shaped interferometer with a QD in the end. The inset is a schematic diagram of the sample. A
magnetic field of 0.80 T is applied. The curves for T < 700 mK are incrementally shifted upward
for clarity. When both gates of the dot were open, clear Coulomb oscillation was observed even
at 700 mK. (b) Three Fano features in the conductance at 30 mK are fitted to equation (13). The
obtained qs are shown. The vertical dashed lines indicate the obtained discrete level positions.
From [27].
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The simplicity and the long distance for the interference make this system effective for
investigating the interference and the temperature dependence of the coherence length. For
the gate voltage Vg > −0.45 V, almost ideal Fano lineshapes for the side-coupled geometry
(single-point contact) with q ∼ 0 are obtained (figure 13(b)) for many dips, while a significant
shift of q from 0 is observed for Vg < −0.45 V. We consider the following simple model to
take into account the resonance in the stub region in the explanation. Let L be the distance
between the T-connection and the dot. The QD is simply expressed as a tunable resonator,
which is expressed as a tunnel barrier plus a perfect reflector. The variable phase shift of the
reflector is approximated to be proportional to the gate voltage around resonance. The quantum
wire between the dot and the T-connection is simply a phase shifter of kL (k is the wavevector).
We set the S matrix for the T-connection ST as

( b1

b2

b3

)
= ST

( a1

a2

a3

)
, ST =

⎛
⎜⎜⎝

1−a
2 − 1+a

2

√
1−a2

2

− 1+a
2

1−a
2

√
1−a2

2√
1−a2

2

√
1−a2

2 a

⎞
⎟⎟⎠ , (20)

to maintain the unitarity. Here, we take a to be a real number, which determines the direct
reflection coefficient. The S matrix for the quantum wire (phase shifter) is expressed as(

a3

b′
3

)
= SQW

(
b3

a′
3

)
, SQW =

(
0 eiβ

eiβ 0

)
, β ≡ kL . (21)

The S matrix for the tunnel barrier can be written as(
a′

3
a4

)
= SD

(
b′

3
b4

)
, SD =

(
cosφ i sinφ
i sinφ cosφ

)
. (22)

Lastly, the reflector with a variable phase shift of θ is simply expressed as

b4 = eiθa4. (23)

By calculating the combined S matrix, the complex transmission coefficient of the system
is obtained as

t = 1 + a

2
· −1 − ei(θ+2β) + (e2iβ + eiθ ) cosφ

1 + aei(θ+2β) − (ae2iβ + eiθ ) cosφ
. (24)

It is easy to see that equation (24) leads to non-zero q if we approximate the lineshape with
equation (13). We utilized the expression (24) to calculate the temperature dependence of the
lineshape resulting from the thermal broadening of electron energy, and found the temperature
variation shown in figure 13(a) to be well explained by the thermal broadening. That is, the
temperature dependence of the Fano lineshape is well fitted by

GFano = A
2e2

h

∫
dε|t (ε)|2 1

4kBT
cosh−2

(
ε − μ

2kBT

)
, (25)

where μ is the Fermi energy (see figure 14). In other words, there is no trace of additional
‘intrinsic’ decoherence [29] in the present case.

5.3. Interferometry for a few-electron QD

When the dot is very close to the branch, the Coulomb effect is severe; on the other hand, this
can be utilized for the charge detection of the charge state in the QD. The Coulomb effect is
greater at transition regions between quantized plateaus, and the main effect switches to the
interference on the plateaus. However, the step-like conductance variation with the wire gate
voltage is still mainly determined by the number of conductance channels, and the interference
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S
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Figure 14. (a) Theoretical model used to analyse the temperature dependence of the Fano lineshape
in a T-shaped interferometer. Rectangles represent S matrices. (b) Results of fitting of equations (24)
and (25) to the data.

effect and the Coulomb effect appear as small corrections to the conductance. In order to extract
the Coulomb and interference effects of the dot on the wire conductance, we extract such simple
stepwise conductance from the total conductance. The residual shift is plotted in grey scale in
figure 15(a), as a function of the wire gate voltage (Vw) and the dot gate voltage (Vg).

In figure 15(a), black and white stripes run along the Vw axis with some slanting and
complicated crossing. They correspond to the Coulomb oscillation of the dot with Fano
distortion. Such flows along Vw suddenly disappear for Vg < −1.0 V. This region is assigned
to the number of electrons in the dot N being zero. Charge sensing measurement supports
this assignment. The indices of conductance quantization are noted as M in the figure and
the curving of the Fano lines occurs in the transition region of M . The amplitude of the
oscillation against Vg is higher in these regions due to the Coulomb effect, i.e. charge sensing.
The amplitude of the oscillation falls sharply at the last Fano line, which means no change
occurs in N below this gate voltage, namely, N = 0.

In the plateau regions, the Coulomb effect is less severe and the subband number in the
wire is stable resulting in regular Fano lines. The addition energy spectra can hence be obtained
from the distances between the Fano lines. Figure 15 shows the obtained addition energy as
a function of N for various Vw. Apparent peaks exist at N = 2 and 6, which correspond to
the closed shells of the two-dimensional circular harmonic potential. This result indicates that,
unexpectedly, circular potential is formed in this side-coupled geometry.

We focus our attention on the Fano structure at the M = 1 plateau. Figure 15(c) is a close-
up of the data for that region. The crossings of black and white lines mean that a rapid change
of the sign of q occurs around the middle of the plateau. In the previous section, we observed
that an extra resonator between the wire and the QD causes shifts from q = 0. However, this
model is not realistic for the present case because the dot and the wire are too close to each
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Centre

Figure 15. (a) Grey-scale plot of the wire conductance shift from ordinary stepwise-varying
conductance of a QPC as a function of the dot gate voltage and the wire voltage. M indicates
the index of conductance quantization of the wire and N the number of electrons in the dot. Fano
peaks appear as strong black–white stripes. Data taken from [30]. (b) Addition energy spectra of
the dot obtained from the distances between the Fano peaks in (a) for three difference wire gate
voltages. (c) Close-up of (a) around M = 1.

Figure 16. (a) Theoretical model of a side-coupled dot–wire system. A single channel is assumed
in the wire and in the multiple connections to the QD. Rectangles indicate S matrices. Sf are fork
matrices, which are identical to ST in equation (20). The dot S matrix is composed of two barrier
matrices (SD in equation (22)) and a phase shifter (SQW in equation (21)) and the phase shift is ζ .
Sp is also a phase shifter with a phase shift of d. (b) Grey-scale plot of the calculated transmission
of the system in (a) as a function of phase shifts ζ and d. White corresponds to 1 and black to 0.
Note the similarity to figure 15(c).

other to have another resonator between them. Here, we instead consider the finite ‘width’
of the contact. The simplest model is expressed by the diagram shown in figure 16(a). On
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a conductance plateau, only the wavenumber along the wire varies with the gate voltage, and
this causes a phase shift between two S matrices, which results in the change in the sign of q .
Note that this simple model does not hold on higher plateaus where the multichannel effect is
predominant, and indeed, in the results (figure 15(a)), no such simple pattern is observed for
the plateaus with M > 1.

6. Interferometry in nearly open QDs

In this section, we focus on the parity of the wavefunction, which appears in the transmission
phase. The key phenomenon is the ‘phase lapse’ introduced in section 3.1. Here we introduce
theoretical interpretations and present experimental evidence for the key concept in some of
them.

6.1. Strongly coupled state and ‘phase lapse’ problem

As noted in section 3.1, an important and intriguing problem revealed by the Weizmann
experiments is the ‘phase lapse’ or ‘parity locking’ problem. As summarized in [31], the
theoretical approaches can be roughly classified into two groups.

In the first group, the existence of a few special states that have much stronger couplings
with leads than do other states is assumed. The legitimacy of such an assumption in a certain
range of dot parameters, particularly for two-dimensional QDs, was verified by numerical
simulations [32–34]. Roughly summarized, the low symmetry or distortion of the confinement
potential leads to a spatial distortion in the localized wavefunction, and if a wavefunction
happens to have a high amplitude connecting the two leads attached to the dot, the transmission
coefficient through the state can be much larger than the others. Here we call such states
strongly coupled states (SCSs), and other states weakly coupled states (WCSs).

For the second group, elastic co-tunnelling at the Coulomb valleys is seriously
considered [35]. A large number of eigenstates in the dot may contribute to such transport,
and they are random in phase and amplitude though the situation changes very little in a series
of consecutive valleys leading to the repetitive −π jumps of the phase shift in the middle of the
Coulomb valleys.

It is easy to show that the parities of transmission through WCSs are dominated by the
SCS nearest in energy. This can be inferred in a single-electron picture [34]. Let us take an
artificial dot confinement potential V0 that has a small difference V from the real potential and
let {ψ0

j } be the eigenfunctions. We can take V0 so as not to have high spatial symmetries and
then the existence of SCSs in {ψ0

j } can be expected. We treat V as an artificial perturbation.
The wavefunction of a WCS after mixing is expressed in the first order as

ψ j ≈ ψ0
j + ψN

〈ψ0
j |V |ψN 〉

E0
j − EN

, (26)

where N is the index of the SCS closest to the energy level E0
j of the unperturbed state ψ0

j .
Because the couplings to the electrodes are much stronger for ψN , the matrix element for the
transition throughψ j is dominated by the component that contains |ψN 〉〈ψN |. The point of this
discussion is that from the aspect of transport, SCSs dominate the states even when the absolute
value of the component is not very large.

The above concept explains parity locking for several peaks under the domination of an
SCS, though there should be parity alternations when the nearest SCS is replaced by the next
one. A concept to explain the parity locking for a number of peaks is ‘state hovering’ over
the Fermi level, which is illustrated in figure 17. We consider electron–electron interaction
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Figure 17. Schematic diagram to explain the concept of ‘state hovering’ of energy levels in a QD
as a function of gate voltage. Redrawn from [36].

in the simplest static capacitance approximation. Because an SCS has strong couplings to
the electrodes, its spatial dimensions should also be larger than those of WCSs, resulting in a
slower movement along the energy axis against the gate voltage. This causes many crossings
between the SCS and WCSs, though the coupling through electrodes causes anti-crossing,
which transfer, for example, the SCS component from the lower branch to the upper one. When
several conditions are fulfilled, this raises the SCS at the anti-crossing and the level that crosses
the Fermi level always has the character of the SCS.

A weak point of this explanation is that the ‘hovering’ is not stable to the fluctuation of
parameters. Several stabilization mechanisms for the hovering or a similar phenomenon have
been proposed. Under the condition

�WCS  �  �SCS  U. (27)

Silvestrov and Imry pointed out that the energy due to the quantum fluctuation through the
SCS (second-order perturbation) and the constant Coulomb energy U leads to rapid population
switching in Coulomb valleys and stable hovering [33]. This line of thought has been extended
to include, for example, the asymmetry of electrodes [37]. Baltin et al also discussed that the
finite temperature would also stabilize the hovering [35].

6.2. The Fano effect without an interference circuit

In this subsection, we present an experiment to prove the existence of SCS in a QD.
Göres, Goldhaber-Gordon and co-workers were the first to claim the observation of the

Fano effect in a fabricated semiconductor QD, though their device had no outer interference
circuit [38, 39]. This opened up many theoretical proposals for the interpretation. Although
in many of those proposals the appearance of the Kondo effect is assumed, here we discuss
another possibility together with the presentation of our experiment.

When the connection of a QD to leads becomes stronger and approaches e2/h, which is
the boundary to an open dot, the co-tunnelling conductions via SCSs become very large and
comparable to those through resonant levels. In such a case, interference between a resonant-
level conduction and a co-tunnelling using the SCS nearest in energy would take place, resulting
in the Fano effect. Note that in this regime the SCS closest to the Fermi surface is broad in
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Figure 18. (a) Coulomb oscillation of a quantum dot marginally inside the ‘closed dot’ region. The
slow background oscillation is due to the series of SCSs. (b) Fano parameters q obtained by fitting
equation (13) to each lineshape. Vertical dotted and broken lines indicate the zero-crossing points,
which are in accordance with peaks and dips of the background oscillation in (a). (c) Grey-scale plot
of the conductance as a function of the gate voltage and the source–drain voltage, showing stacked
Coulomb diamonds (the stacking is due to the Fano distortion). The edges of Coulomb blocked
regions are roughly connected by white broken lines, which reveals larger diamond structures.
(After [40].)

energy and in real space, hence condition (27) is not fulfilled and the stabilization mechanism
of state hovering is not in effect.

We prepared a simple single-dot structure (figure 2(c)) and the conductance was set
to immediately below e2/h. Figure 18(a) shows the Coulomb oscillation for zero-bias
conductance in a wide range of gate voltages Vg. The sawtooth-like patterns are Fano-distorted
Coulomb peaks and they are superposed on a slow irregular background oscillation with a large
amplitude. From the fitting of equation (13) to each peak, we obtain the values of distortion
parameter q and plot them in figure 18(b). The obtained parameter also oscillates coherently
versus Vg, but out-of-phase with the background oscillation as indicated by the vertical dotted
and broken lines.

Our speculation gives qualitative explanations for all the above observations. Because
stabilization of state hovering is ‘off’, the SCSs move slowly with Vg, resulting in the slow
background oscillation. A replacement of the closest SCS then occurs in the valleys of
the background oscillation. The sign of q represents the direction of the transition in the
interference, i.e. destructive to constructive or vice versa. Although the hovering is off, the
anti-crossing between the closest SCS and the resonant WCS should occur somewhere close
to the Fermi level, giving the opposite parity to the WCS (i.e. parity domination by WCS with
state mixing). Now the phase shift of a dominating SCS varies by π around the corresponding
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Figure 19. (a) Simple model for describing quantum decoherence in an AB ring. ψ1,2 correspond to
electron wavefunctions and χ1,2 to the environment. (b) We take a QD in path 2 as an environment.
If there is no spin in the QD, the QD quantum state is not charged with the passage of an
electron. (c) When the QD has a spin, the traversal of an electron creates the states superposition
(|↑〉 − |↓〉)/√2 in the QD. As a result, the amplitude of the interference term largely decreases
(partial coherence).

peak of the background oscillation. Let us consider the case when an SCS is approaching EF

by the gate voltage and has the phase shift 0. The phase shift of a WCS changes from π to
0 when it crosses EF, resulting in positive q (destructive to constructive). Then after the SCS
passes EF (a peak in the background), the sign of q should be reversed. In other words, q > 0
to the left of a background peak and q < 0 to the right. This is exactly what we observe in
figures 18(a), (b). Note that the interference occurs between an SCS and a kind of ‘mirrored
state’ and this direction of sign change in q should be generically observed [34].

The above inference is further supported by the Coulomb diamond measurement shown in
figure 18(c), in which diamonds originate as a result of Coulomb blockade between adjacent
WCSs lined up in a stacked manner due to Fano distortion. The closer the energies of an
SCS and a WCS, the greater the mixing. Because an SCS has a larger spatial scale, greater
mixing results in smaller effective capacitance, that is, smaller diamond size. This leads to an
oscillation in the size of diamonds that is synchronized with the background oscillation. These
features are also clearly observed and confirm that the above discussion is on the right track.

We hence conclude that the above results clearly indicate the existence of SCSs in QDs
and the domination of parities in the transport.

7. Spin–flip scattering

So far, we have considered phase shift in the orbital part of the electron wavefunction. When
there are some factors that affect the spin part, such as spin–flip scattering and spin–orbit
interaction, the inner product of the spin part also causes interference depending on the mutual
angle of spins. Hence a perturbation that modifies the spin angle can serve as a variable for
tuning the interference.

The simplest way to tune the interference of such a spin part is to apply a local magnetic
field to a path in an interferometer. A local field causes rotation of spins on one of the
interference paths and affects the output. Such experiments were carried out using neutron
beams in the 1970s [41, 42].

A QD with an odd number of electrons has a localized spin of 1/2 at least. If the dot
is embedded in one of the interference paths and the localized spin interacts with those of
conduction electrons, the spin part is also affected, and that is evident in the output.

We can consider the process to be quantum decoherence, as follows. In a sense,
decoherence of a quantum system ψ occurs through entanglement with the ‘environment’ χ ,
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Figure 20. (a) Schematic of gate configuration (grey regions) adopted in the Weizmann group
experiment to detect decoherence due to observation via a QPC adjacent to a QD. (b) Visibility of
AB interference as a function of QPC gate voltage for two source–drain voltages (10 μV: open
circles, 100 μV: solid circles). The solid line shows the shot noise level in arbitrary units. The data
are taken from [44].

which has an infinite number of degrees of freedom [43]. Let us take, for example, an open AB
interferometer and assign ψ1 and ψ2 for electron traversals through paths 1 and 2, respectively
(figure 19). If we ignore the environment, an electron traversing over the ring is then expressed
as the sum |ψ1〉+|ψ2〉. The environment wavefunctions χ1,2 are introduced in the same manner
and the total wavefunction � is written as the sum of direct products:

|�〉 = |ψ1〉 ⊗ |χ1〉 + |ψ2〉 ⊗ |χ2〉, (28)

〈�|�〉 = |ψ1|2 + |ψ2|2 + 2 Re[〈ψ1|ψ2〉〈χ1|χ2〉]. (29)

The last term represents the interference. Equation (28) is a quantum entangled state if χ1

and χ2 are not identical. If χ1 and χ2 are orthogonal, equation (28) represents a maximally
entangled state and the interference term in equation (29) vanishes. This process can be
decoherence because the environment has a infinite number of degrees of freedom and the
interference does not recover henceforth.

The observation of such a decoherence was demonstrated by the Weizmann group using
a QD in an open AB interferometer. They placed a quantum point contact (QPC) next to the
QD to detect the charge states in the QD by conductance through the QPC (figure 20(a)). They
found a clear correlation between the shot noise in the QPC conductance and the AB visibility,
as shown in figure 20(b). In this experiment, the numerous electrons flowing through the circuit
that contains the QPC play the role of the environment.

The quantum decoherence observed in the low-temperature limit in quantum transport
has often been attributed to spin scattering at local magnetic moments, though the debate on
‘intrinsic decoherence’ has not been completely settled [45]. In spin–flip scattering, a local
moment ‘memorizes’ the spatial path of an electron and this information spreads out by the
following interaction with other degrees of freedom. It was theoretically proposed that such
a spin–flip decoherence mechanism can be microscopically verified using a QD embedded
in an AB ring [46–49]. Here, a QD with an odd number of electrons serves as a magnetic
impurity. A traversing electron becomes decoherent only when it undergoes spin–flip scattering
and ‘partial coherence’ should remain, though this mechanism certainly diminishes the AB
amplitude. Therefore, the AB visibility should be lower for states with an odd number of
electrons.
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Figure 21. (a) Grey-scale plot of the AB component of conductance in a ring-and-dot system. Two
vertical dotted lines indicate the positions of twin Coulomb peaks (a spin pair). (b) Integrated AB
amplitude around spin-pair states. The dip structures exactly at the peaks are due to the phase jumps
originating from the phase rigidity. (From [54]).

In spite of the simple principle of detecting partial coherence, the experimental realization
has many obstacles. The above scenario is highly idealized in that all aspects of the system
and environment other than the occupation of the topmost level are assumed to be identical
throughout the entire region of Coulomb peaks. In the actual experiment, it is crucial to assess
to what degree this condition is fulfilled. There are many factors that might affect the AB
amplitude as a function of N , such as a change in the electrostatic potential. The assumed
energy level structure, that is, a non-degenerate nearly equidistant stack based on the random
matrix theory [50], rarely holds for semiconductor QDs [51], and electron correlation can give
rise to high-spin states. Therefore, the simple picture that single-electron orbital levels are
sequentially occupied by spin-up and spin-down electrons is far from reality.

Nevertheless, one can hope to find an energy window (i.e. the gate voltage) within which
the simplest ‘spin-pair’ model is a good approximation: only a single Kramers degenerate
state should exist immediately above a closed-shell many-electron state in the energy diagram.
Although such a spin-pair state rarely exists in semiconductor QDs [51–53], once it is found
we can circumvent the above problems and attribute the difference in the coherence to spin
entanglement, because the conditions other than the spin state are ideally equal for both sides
of Coulomb peaks in this window.

A spin-pair state appears as twin Coulomb peaks (spin-pair peaks). The conditions
required of such twin peaks are as follows. (I) They should be entirely alike with each other
in the magnetic field dependence of the positions and the heights. (II) The above dependence
should be different from those of neighbouring ones because the conductions at neighbouring
peaks are through different single-electron orbital states. (III) The addition energy between
the peaks is likely to be smaller than those of neighbouring peaks because there should be no
portion of orbital energy. Note that condition (II) excludes high-spin states.

Following the above guidelines, we searched for such a spin-pair state in a QD embedded in
a two-terminal AB ring and found one from among hundreds of Coulomb peaks [54]. Figure 21
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shows the result of AB measurement around the spin-pair states. The dips exactly at the
Coulomb peaks are due to AB phase jumps originating from the phase rigidity. Asymmetry
in the amplitude is clearly observed, which indicates the reduction of coherence through the
conductance over the state with an odd number of electrons. This observation is evidence of
the decoherence mechanism involving spin–flip scattering.

The spin–flip decoherence mechanism is effective in the absence of the Kondo effect,
which prevents the quantum information of scattered electrons from spreading out to the
environment. We continue this discussion in the next section.

8. The Fano–Kondo effect in quantum dot systems

8.1. The Kondo effect in a quantum dot

Immediately after a scattering of a conduction electron |s,↓〉 by a localized spin |d,↑〉, an
entangled state,

1√
2
(|s,↑〉|d,↓〉 − |s,↓〉|d,↑〉), (30)

is formed. At this moment, the state is still expressed by a vector in Hilbert space and the
scattering itself cannot be counted as quantum decoherence. The decoherence thus requires
some additional mechanism to disperse the quantum information memorized on the dot into
the environment. Therefore if one adopts a theoretical formalism, that has no such built-
in mechanism for decoherence, as a tautologous conclusion, no decoherence appears. In
such theories, spin scattering is nothing but spin rotation and a reduction in the interference
amplitude is merely due to another interference effect in the spin part, and apparently they are
not applicable to realistic systems with spin scattering.

However, when the Kondo effect takes place, the situation changes. As is well known, the
spin-scattering process, equation (30), is one of the origins of the Kondo effect [55, 56]. Upon
lowering the temperature below the characteristic TK, a many-body state that screens the local
moment grows. The state called the Kondo cloud (ψKondo) can include the Fermi liquid state
(ψFermi), for example, by the following procedure [57]:

ψKondo =
{∑

k

[�αk a†
k↓α + �

β

k a†
k↑β] + (higher order terms)

}
ψFermi, (31)

where α and β denote spin-up and spin-down states, respectively. The first term on the right-
hand side represents the first-order spin scattering, equation (30), and the sum of all order
terms represents a closed many-body state with a huge number of entanglements. In this sense,
the Kondo effect is a disturbance mechanism of the dispersion of the quantum information
memorized on the dot into the environment. This ‘recovery’ of coherence is not equivalent
to the screening of the local moment, in that the coherence also recovers even in the case of
over/underscreening.

In a spin-1/2 Kondo model in particular, a Kondo cloud is in resonance with the Fermi
surface of conduction electrons. Therefore, the conductance through a Kondo cloud is locked
to the quantum conductance 2e2/h in the unitary limit, resulting in the characteristic Coulomb
oscillation shown in figure 1(c). At the same time, reflecting the resonant feature, the phase
shift attaches to π/2, which is derived using the Anderson theorem and the Friedel sum rule.
This behaviour is a direct reflection of ‘resonance’ and thus reflects the many-body nature of
the Kondo effect.
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Figure 22. Fano–Kondo lineshape calculated for a T-shaped geometry with a tight-binding
approximation. (a) Parameters (energy ε, on-site repulsion U , hopping matrix elements ti j ) of
the T-connection site are the same as those of neighbouring sites. The Fano parameter q should
consequently be zero. Temperature dependences are calculated by various approximation methods
(Padé, maximum entropy method (MEM)). The curve for absolute zero is deduced from the Friedel
sum rule. (b) With shifting of the parameters from the symmetric point, a FK lineshape with non-
zero q appears. In the present case, Ud = 4, δ/t = 1, δd/t = 0.61, and q becomes −0.8. The
plateau structure due to π/2 phase shift locking is observed at low temperatures. (From [58].)

8.2. The Fano–Kondo effect in a T-shaped geometry

An anomalous behaviour of the phase shift should appear in the interference effect. When a
quantum dot is part of a quantum mechanical resonant circuit and the spin in the dot brings
about the Kondo effect, the geometrical (i.e. single-electron) resonance and the many-electron
resonance should coexist, resulting in a peculiar lineshape of the transmission, called the Fano–
Kondo (FK) effect [22].

If we assume the simplest dot level structure, that is, a stack of spin-pair states, the Kondo
effect appears alternately in Coulomb valleys, reflecting the fact that the local spin 1/2 only
appears for a dot with an odd number of electrons. This results in alternating enhancement of
conductance in the Coulomb valleys as shown in figure 1(c). If we put such a Kondo dot in an
interferometer, the FK lineshape should appear alternately (figure 1(d)).

In an ideal T-shaped interferometer that has a single-point contact between the lead and the
dot, only the q = 0 Fano effect is allowed. In this case, the FK lineshape should be the upside-
down form of the symmetric Kondo lineshape. However, as discussed in sections 5.1 and 5.3,
we often observe a q �= 0 Fano effect in the T-shaped geometry. This occurs, for example, as
a result of the presence of an extra resonator between the T-coupling position and the dot. In
a tight-binding approximation, this corresponds to setting parameters different from those of
the neighbouring ones at the site exactly at the T-coupling position [58]. Figure 22 shows the
results of such a calculation. Each site has its own orbital kinetic energy ε, on-site Coulomb
repulsion U , and hopping probabilities to neighbours ti . When these parameters are set to be
uniform along the quantum wire, q is zero and the FK lineshape is simply the upside-down
form of the ordinary Kondo lineshape, whereas when q is non-zero, a peculiar FK lineshape
with a plateau due to π/2 phase shift locking appears, as shown in figure 22(b).

We measured the conductance of a quantum wire placed adjacent to a quantum dot
(figure 23(a)) [59]. The coupling between the dot and the wire can be tuned via the gate
voltage Vm . Figure 23(b) displays the wire conductance for different coupling gate voltages
Vm as a function of the dot gate voltage Vg. The wire gate voltage was tuned such that the
conductance was on the first conductance plateau, in order to minimize the Coulomb charge
sensing effect. In the topmost line for weak coupling, ordinary Fano dips are observed. As
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Figure 23. (a) Gate configuration of the sample. (b) Conductance of the wire measured at several
coupling strengths tuned via Vm. The base temperature is 30 mK. The step in Vm is 6 mV and
the data are offset by 0.3e2/h for clarity. (c) Top: conductance as a function of gate voltage at
temperatures from 750 to 50 mK with the temperature step of 50 mK. Bottom: Kondo temperatures
TK obtained from the temperature dependence. (d) Examples of the fitting to obtain TK. (e) Phase
shift of the QD obtained for the data at 50 mK for various coupling strengths. (From [59].)
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the coupling strength increases, conductance between the dips (Coulomb valleys) decreases
alternately, which leads to the merging of two neighbouring dips into one. This behaviour is
very similar to that theoretically predicted for q = 0 (figure 22 (a)) and indicates the emergence
of the FK effect. Here, with the increase of coupling strength, the Kondo temperature TK

increases, which means a decrease of effective temperature.
Figure 23(c) shows the temperature dependence of dip A, which is again very similar to

figure 22(a). To be more quantitative, we focus on two gate positions indicated by ◦ and + and
show their detailed temperature dependences in figure 23(d). In order to estimate TK, we use
an empirical formula for the temperature dependence G(T ) [60, 61]:

G(T ) = G0 − G1

(
T ′2

K

(T 2 + T ′2
K )

)s

, (32)

where G1, T ′
K ≡ TK/

√
21/s − 1 and s are fitting parameters. G0 was fixed at 1.8e2/h, the

wire conductance far from anti-resonance. Examples of the fitting are shown as lines in
figure 23(d). The data below 120 mK were not included in the fitting because of electron
temperature saturation. From the fitting, s = 0.25 ± 0.04 was obtained, which is in accordance
with the prediction for spin-1/2 impurities. The obtained TK are plotted as a function of Vg in
the lower panel of figure 23(c). TK depends parabolically on Vg with the bottom around the
midpoint of the Kondo valley, just as previously reported [62]. This dependence agrees well
with the Kondo temperature,

TK =
√
�U

2
exp

(
πε(ε + U)

�U

)
, (33)

where � is the dot–wire coupling and ε is the single-electron level measured from the Fermi
level. We obtained U = 0.39 ± 0.03 meV and � = 0.30 ± 0.02 meV by fitting the above
function to TK.

The phase shift of the Kondo state can be deduced by assuming the same scattering model
as described in section 5.2 (figure 14(a)). Here, we can set L = 0, which corresponds to q = 0,
for simpler analysis. On the other hand, because the reflection phase shift is measured in the
present system, it is impossible to distinguish�θ from π/2 −�θ , where �θ is the phase shift
of the transmission mode. Figure 23(e) displays the calculated transmission phase shift as a
function of Vg for the FK lineshapes in figure 23(b) (dip A). The folding at π/2 is due to the
reflection measurement. It is clear that �θ approaches the curve for the locking to π/2 in the
middle of the Coulomb valley.

8.3. The FK effect in an AB ring geometry

Ji and co-workers first reported phase measurements of QDs in the Kondo regime with open
AB interferometers, in which multiple scattering was carefully avoided [63, 64], and hence no
Fano effect appeared. Surprisingly, they found that the transmission phase shift did not show
locking to π/2 and varied smoothly (almost linearly) through a Kondo peak even when the
system was close to the unitary limit. The result raised strong doubt as to the applicability of
the Anderson impurity model to QD systems, and hence an examination of phase locking in
other systems is important.

In a two-terminal AB ring interferometer, transmission phase shift and reflection phase
shift appear in a mixed manner, resulting in phase rigidity, as we demonstrated in section 2.1,
which makes direct phase measurement difficult. However, this does not mean that phase shift
locking cannot be observed in two-terminal devices. At a resonance point, that is, at the point
of phase jump of primary AB oscillation with the period φ0, the amplitude of the primary
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Figure 24. Calculated conductance of an AB interferometer with a quantum dot in the Kondo
unitary limit as a function of the energy difference between the resonant level and the Fermi level.
(a) Lineshape variation of conductance with dot-electrode coupling constant. (b) Magnetic flux
evolution of the lineshape. Data taken from [22].

component diminishes to zero and those of higher harmonics increase. The same should occur,
then, at Kondo resonances for a finite range of gate voltage. Such behaviour is predicted by a
theory of the FK effect in a closed AB interferometer [22]. The results of that calculation are
shown in figure 24.

In figure 24(a), FK lineshapes at a Coulomb valley are plotted for various coupling
strengths. The value of q varies from infinite (a single peak) to finite (a peak + a shoulder + a
dip) to zero (a single dip). A plateau or shoulder structure appears in the middle of the Coulomb
valley due to phase shift locking. On the other hand, in figure 24(b), the coupling is fixed and
the magnetic flux piercing the ring is varied by a half-flux quantum (φ0/2). With this change
in the flux, e.g. at ε = 0, the conductance changes from the peak to the dip, corresponding to
a half-period of AB oscillation, while in the middle of the valley, the conductance recovers to
the initial value (a full period). This is due to phase rigidity, which leads to the disappearance
of the AB component with the period of φ0. Consequently, frequency doubling occurs in the
middle of the valley. Also, in this series of lineshapes, a plateau or a shoulder due to phase shift
locking always appears in the middle.

Figure 25 shows our experimental results for the Fano–Kondo effect in a QD embedded
in a two-terminal AB ring [65]. As shown in figure 25(a), a clear Kondo peak was observed
in the total conductance. However, the AB component in the conductance is small in zero
field and in order to observe sufficient amplitude, we should apply a magnetic field of about
0.5 T. To emphasize the response to the magnetic field, we extract the conductance that does
not depend on the field or changes slowly with the field. Figure 25(b) shows the obtained AB
oscillation component in grey scale as a function of the gate voltage and the magnetic field.
Here, we have chosen a field area of two AB periods, though almost the same structure repeats
for more than 20 periods in this field range. The black and white stripes, which express the
AB oscillation, flow smoothly with gate voltage, reflecting the breaking of phase rigidity. The
behaviour appears to be similar to that in the open AB interferometer [64], though a major
difference lies in the FK lineshape. Figure 25(c) displays cross sections of the grey-scale plot
along the four white broken lines in (b); these four curves correspond to a single cycle of the
AB oscillation. A characteristic of these curves is that each has a plateau or a shoulder structure
in the middle of the Coulomb valley.
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Figure 25. The Fano–Kondo effect in a QD embedded in an AB ring. (a) Total conductance of
the ring around a Fano–Kondo peak. (b) Grey-scale plot of coherent conductance for 2.5 periods
of AB oscillation. Each white broken line corresponds to a lineshape shown in (c). (c) Fano–
Kondo lineshape and its response to the AB flux �φ measured with flux quantum φ0 ≡ h/e from
B = 0.47761 T. Four representative lineshapes in a single AB cycle are depicted for�φ = 0, φ0/4,
φ0/2, and 3φ0/4. (From [65].)

Although the above result strongly suggests phase shift locking, the absence of frequency
doubling, in other words the breaking of phase rigidity, must still be explained. A possible
explanation is given using the theoretical model we adopted in section 4, in which the
multichannel effect is considered. However, the model is not applicable to the present results, at
least for many AB periods, because the model is designed to simulate the real physical situation
with a multichannel interference circuit for a narrow field range, whereas the behaviour in
figure 25 repeats over 20 AB periods. Also, particularly at the midpoint of a Coulomb valley,
only the Kondo cloud state can carry the current, which means that, within the framework of the
model, only the single loop associated with the Kondo cloud is effective for the conductance
and phase rigidity cannot be broken.

Here, we apply the multichannel concept to elucidate a realistic physical mechanism of
breaking phase rigidity [65]. At around 0.5 T, the magnetic length is about 35 nm, which is
shorter than half the effective width of the arms, and the cyclotron radius is about 0.5 μm,
which is comparable to that of the ring. This means the edge state is beginning to be formed
but is not well defined. In order to take this situation into account we consider the conduction
channels illustrated in figure 26 as a minimal model. Channel 1 is formed around the inner
side of the AB ring by the magnetic field, which connects the left and right leads through the
reference arm by Weiϕ , or via the QD by V (1)

L , V (1)
R . Channel 2 is formed on the outer side and

connects to the QD by V (2)
L , V (2)

R . In the QD, we consider a single energy level, ε0, measured
from the Fermi energy in the leads.
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Figure 26. (a) Model of AB ring with two conduction channels, both of which couple to an energy
level ε0 in the embedded QD. Channel 1 is formed around the inner side of the AB ring, and is
coupled to external electrodes (not shown) with probability p. (b) The conductance averaged over
ϕ, Gave, and (c) �G = G(ϕ) − Gave as a function of ε0. p is taken to be 0.5. The density of
states in the leads is constant ν in the energy range of [−D, D]. U = 0.5D and level broadening by
V (α)

r is �(α)r = 2πνV (α)2
r = 0.015D for all α = 1, 2 and r = L , R. The transmission probability

through the reference arm is Tref = 4x/(1 + x)2 = 0.3, where x = (πνW )2. (From [65].)

In the Coulomb blockade region with an electron in the dot, −U < ε0 < 0, the Kondo
effect takes place and the Kondo cloud is formed with both channels 1 and 2. Electrons
in channel 1 are resonantly transported through the Kondo cloud, whereas the coupling to
channel 2 breaks the phase rigidity. We adopt the finite-U slave boson mean-field theory [66]
to calculate the transport at T = 0. In figure 26(b), we show the conductance as a function
of the dot level ε0. In figures 26(b) and (c), we show the conductance as a function of the dot
level ε0, with a fixed phenomenological parameter p = 0.5. The conductance is enhanced
by the Kondo effect and changes smoothly with ϕ, in good accordance with the experimental
data shown in figure 25(c). The lineshape is periodic with the primary AB period. The above
discussion presents a possible explanation for the present results and presumably covers the
essential points. Thus the phase shift locking to π/2 in the middle of the Coulomb valley is
now unquestionable.

We have reached the important conclusion that there should be an essential difference
between closed interferometers and open ones other than those explainable within the
Landauer–Büttiker scattering formalism. Then the origin of such a difference is naturally the
next question, though we have no clear answer to this at present. In a closed interferometer,
the wavefunction surrounding a QD is partly a standing wave, which emphasizes the nature of
localization. This is similar for a Kondo cloud, and this common characteristic may facilitate
collaboration between the two kinds of resonances and enable the Anderson impurity model to
be applicable, though this is a naive qualitative inference.

Apart from the above problem an important difference between closed and open
interferometers is the ‘reaction’ from the interference circuits to the Kondo effect. The theories
so far introduced treat the unitary limit, i.e. T = 0. Interference or resonance in a system
surrounding a QD affects the amplitude of the wavefunction at the junctions to the QD and thus
the coupling strength �. Even within approaches based on the Anderson impurity model, this
leads to the modification of TK with the AB period in the case of an AB interferometer.

A phenomenon essentially the same as that above was observed in a QD with a ring
structure. Modulation of the Kondo effect was clearly reflected in the magnetic-field variation
of the current–voltage characteristics shown in figure 27(a). The height of the zero-bias
anomaly�K showed peaks with the interval of AB oscillation (figure 27(b)). Figures 27(c)–(e)
suggest that the modulation of �K (thus TK) is mainly due to that of �.
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Figure 27. (a) Current–voltage characteristics of a quantum ring in the Kondo regime for different
magnetic fluxes. The data are shifted by 0.1e2/h for about 0.15φ0. Zero-bias anomalies (amplitude
�K ) characteristic of the Kondo effect are strongly modulated with the magnetic field. (b) �K ,
(c) width of the zero-bias conductance (Kondo) peak (full width at half maximum, FWHM),
(d) conductance peak height and (e) energy separation of single-electron levels �E plotted as a
function of magnetic field B . �B is the AB period and I and II indicate two difference Coulomb
diamonds. From [67].

Also in the case of a Kondo QD and an AB ring, similar modulation should exist and
cause characteristic distortion of the AB oscillation, resulting in significant modification of the
lineshape at finite temperatures [23, 68, 69]. Although this should cause the breakdown of the
straightforward application of the Kondo theory at the unitary limit to closed interferometers,
the applicability to open ones is unclear.

9. Summary

We have reviewed ‘phase shift measurements’ of quantum dots in two-terminal interference
devices. The ‘phase rigidity’ problem has been overcome as a result of detailed analysis of the
transmission through resonance, that is, the Fano effect. We have seen that the phase rigidity
can be broken down by the multichannel effect. The existence of strongly coupled states has
been proved, which should be a key to solving the problem of phase lapse. The creation of
‘partially coherent states’ has been observed to be a result of the reduction of the AB amplitude
when spin scattering by a quantum dot exists, though the recovery of quantum coherence via
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the growing of the Kondo cloud state has also been observed. Phase shift locking to π/2 has
been observed in the Fano–Kondo effect in a T-shaped interferometer and an Aharonov–Bohm
interferometer.
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